

Testing Ballast Water Technologies

a challenge for marine research in the Netherlands

Marcel Veldhuis & Frank Fuhr
Department of Biological Oceanography
Royal Netherlands Institute for Sea Research
POBox 59
1790 AB, Den Burg, TEXEL
The Netherlands
Veldhuis@nioz.nl / ffuhr@nioz.nl

- Introduction of Royal-NIOZ and history BWT activities
- Why is NIOZ so unique for land-based testing
- Collaborating partners
- Mission of <u>academic</u> research institute in BWT testing
- Standard-D2, CA and the NIOZ approach
- Results (Hamann AG, Ecochlor & Hyde-Marine/LAMOR)
- Future plans

Representing view of NIOZ and not necessary of NA's

Royal Netherlands Institute for Sea Research

Zoological Station

1876

1970-present harbour

Main building

Den Helder - Zoological Station/NIOZ

- testing since 2004; 2007 & 2008 Final/Type Approval tests
- 3 test series for Certification by NA, 16 companies pilot studies
- Tidal system with coastal water varying in salinity (24 30 PSU) and turbidity (10 - > 100 mg/l)

Organisms diversity > 50 different species belonging to numerous general

The ultimate challenge: treating huge blooms of slimy phytoplankton

Partners

BUNDESAMT FÜR SEESCHIFFFAHRT LIND

- Bundesamt für Seeshifffart und Hydr. German administration
- Marine Coastguard Agency (MCA)
- Dutch Min. Verkeer & Waterstaat (NL),
- Lloyds Register (London, Rotterdam),
- TNO-Imares, AquaSense (toxicology studies),
- VITENS (human pathogens)
- CaTO Marine Ecosystems Research and Manage
- KiTe ARC, GoConsult
- US-Coastguard
- NL-Royal marines
- GSI
- IMO/GESAMP

oz Mission academic research institute in BWT testing

- Public organization bound to publish all research in international peer reviewed journals
- Developing generic and specific tools and technologies
- Viruses, bacteria, phytoplankton and zooplankton (life stages)
- Holistic approach multiple tools to asses <u>numbers</u> and <u>viability</u>, applying state of the art tools and technologies
- Critical review of G8/G9 and legal aspects,
- Fundaments for future legislation based on acquired data
- Specialized studies of 'silver bullets'

Mission academic research institute in BWT testing

holistic approach multiple tools to asses numbers and viability
 Microscopic counts (time consuming)

FlowCam; semi-automated (larger organisms)

Flow cytometry; automated (smaller organisms), <u>including <10 μm</u> (phytoplankton, bacteria, <u>viruses</u>)

viability of remaining organisms but also vitality of discharged water

Standard-D2, Ballast water management Act (US), CA-standard and the NIOZ approach

Management approach	IMO Standard-D2	BW management -Act	2008 California Standard	NIOZ	nature
Org. > 50 μm	< 10 viable/m³	< 0.1 viable/m³	0 (/m³?)	n.d.	$10^2 - 10^5 / \text{m}^3$
Org. 10- 50 µm	<10 viable/mL	< 0.1 viable/mL	< 0.01 viable/mL	n.d.	10-10 ⁴ /mL
Org. < 10 µm (phytoplankton)	_	_	_	n.d.	10-10 ⁶ /mL
Bacteria	_	_	< 10 cfu/mL	_	10 ⁵ -10 ⁸ /mL
viruses	_	_	< 10 ² /mL	_	10 ⁴ -10 ⁸ /mL
n.d.= non- detectable		- = no standard			

The forgotten fraction: Org. $< 10 \mu m$ (phytoplankton)

Large number [± 40,000/ml] of phytoplankton cells 5 µm in diameter

Z0054306.LMD

A lot more phytoplankton cells than the size range of interests !!!!

Results: Interactions with stakeholders

- Intermediate between national administrations/IMO/ industry
- Define protocols for certification; required documentation, conducting land-based testing, data reports (ex/internal review)
- Legal aspects; transparent and sound data to be transferred into legally defendable results
- Trying to harmonize the requirement of different NA (Who is pushing the ON and OFF buttons)

Results: Interactions with stakeholders

- Improve and expand present set of (multiple) test protocols (active substances)
- Compare present standard(s) with current achievements
- legal/statistical aspects of <u>numbers</u> and sample <u>volumes</u>
- (semi)automated analysis
 - TSS,POC,DOC, turbidity, salinity
 - Life -microscopy (> 10 µm)
 - Phytoplankton (PAM, FCM, micro)
 - Bacteria (counts, hum. Path.)
 - Viruses
- Total

- ~ 400 samples
- ~ 120 samples
- ~ 500 samples
- ~ 500 samples
 - ~ 250 samples
 - ~ 1770 samples

NIOZ

Test results

SEDNA-Hamann 104

Hyde-Guardian 102

Ecochlor 106

106

107

108

Test results 104 SEDNA-Hamann₁₀₃ Hyde-Guardian Ecochlor

~ bacteria standard

^{* =} non-viable

- Search for (innovative) tools addressing numbers & viability
- Test bed for innovative BWT technologies
- Transfer of academic knowledge into legislative process
- tools for examining efficacy of BWT systems, research regarding tools for compliance enforcement and monitoring (EU-project submitted; EU-Interreg North Sea)

acknowledgements

Frank Fuhr	Karin Sigel	Kai Trümpler
Peter-Paul Stehouwer	Graham Greensmith	Klaas Kaag
Eveline Garritsen	Tjitse Lupgens	Lothar Reincke
Anna Noordeloos	Dick Brus	Andreas Meinhardt
Swier Oosterhuis	Brain Elliot	Matthias Welle
Jolanda van leperen	Tom Mackey	Michael Volkmer
Jan van Ooyen	Tom Perlich	Siem Groot
Karel Bakker	Matt Granitto	Rober Lakeman
Eveline van Weerlee	Jukka Sassi	Mike Hasson
Santiago Gonzalez	Marcie Merksamer	Daniel Olson
Matthias Voigt	Christian Terrientes	Al Francisco
Bernd Hopf	David Wright	Jan Boon
Rolf von Ostrowski	Cato ten Hallers	Angeligue Metz

there is no wisdom without

